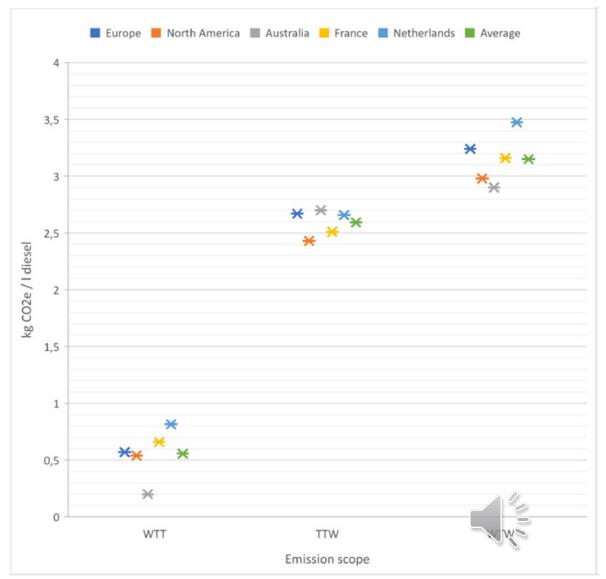


TU Delft MSc Thesis Renee Siepman See repository.tudelft.nl

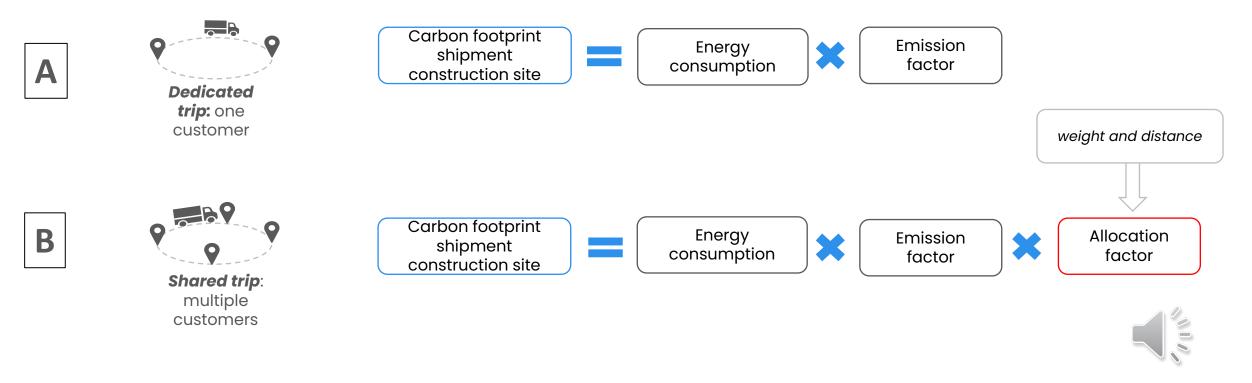
Assessing uncertainties in carbon footprint measurement in road freight transport


Renée Siepman, Raymond van Zwieteren¹, Marcel Ludema, Arjan van Binsbergen, Lóri Tavasszy TU Delft, ¹Districon

Presenter: Lóri Tavasszy, TU Delft

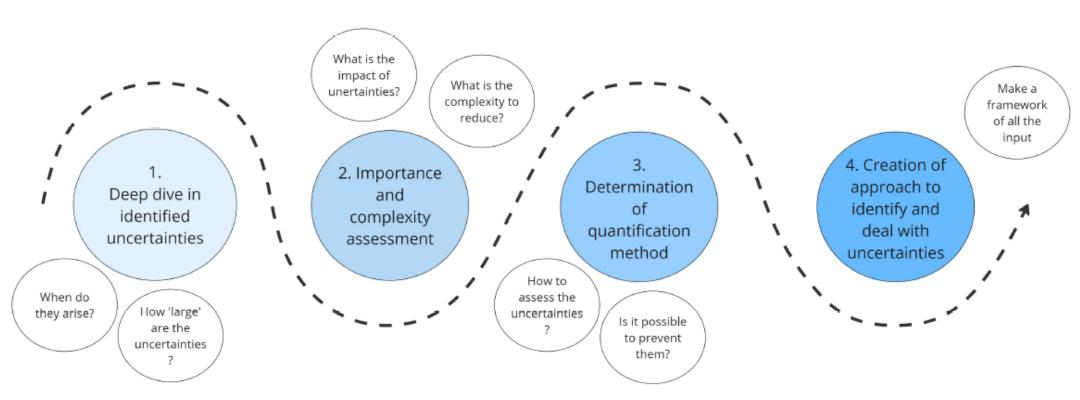
Background

- Topic: Emission reporting & calculation standards
- Simple principle: distance * volume
 * unit energy consumption factor * unit emissions factor
- Data requirements rarely satisfied
- Problem for standards: trade-off between simplicity and accuracy
- Uncertainties may confound understanding of true variation



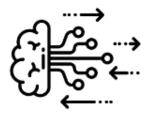
Evolution of standards (EN16528 → GLEC → ISO14083) and tooling

Standards & Methods	Legal basis	GeographicScope	Modes of Transport	Trans- shipping	Remarks
EN16258	Official	Europe	All	_	
SmartWay	Program	North America	All	_	
CE Delft	Research	Global	Partly	_	
GHG Protocols	Method	Global	_	_	Several specific areas
ISO	NGO	Global	_	_	
GLEC	Framework	Global	All	-	Based and further developed on existing methods
EcoTransIT	Commercial	Global	All	_	Based on EN16258, GLEC
BigMile	Commercial	Global	All	✓	
IMO	Official	Global	SEA	_	United Nation
CCWG	Initiative	Global	SEA	_	
ICAO	Official	Global	AIR	_	
IATA	Association	Global	AIR	_	
Green Logistics	Research	Europe	_	✓	
Green Efforts	Research	Europe	_	✓	
Green Freight Europe/ Asia	Program	-			
ITEC	Initiative	Europe	_	✓	ECOHubs
CarbonCare	Commercial	Global	All	✓	



A typical case complicating data needs and requiring additional analysis, assumptions, or guesswork

How to deal with uncertainty in emissions reporting: a design study for supporting tooling



Causes of uncertainty

Variability: Randomness originating from external input data Ambiguity: Because people have different interpretations

Epistemic: Occurs due to lack of knowledge

Context

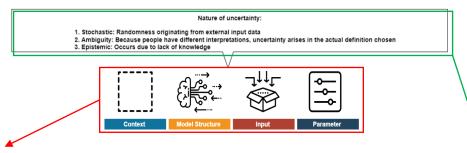
Uncertainties can occur in setting the system boundaries of the model, as well as the framing and formulations of problems in these boundaries.

Uncertainties can occur by the representation of the reality to the model. This can be due to uncertainty in relationships between inputs or outputs and variables, among variables and definitions or assumptions.

Input

Uncertainties can occur in the data input for the model or due to external factors. The data input can exists out of data that is needed as input for the estimation.

Parameter


Uncertainties can occur when there are a priori or calibrated parameters. A priori parameters, hard to calibrate and fixed, require approximation based on experience. Unknown calibrated parameters need determination through calibration.

Model Technical

Uncertainty caused by software or hardware faults, errors in algorithms, errors in model source code and bugs.

Appearance of uncertainties (detail)

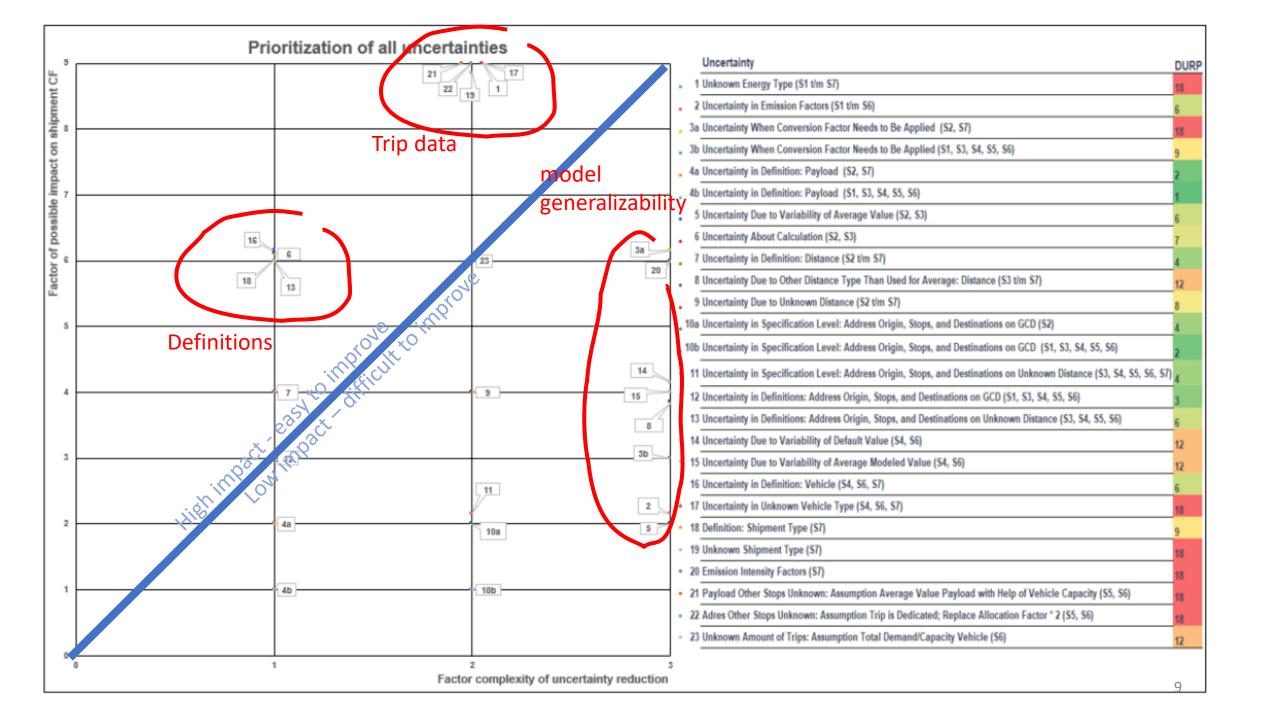
Context Uncertainty, Classification

Source of Uncertainty	ource of Uncertainty Explanation	
Definition of Carbon Footprint	There are different interpretations of a 'carbon footprint', other interpretations can lead to another scope and leads to including or excluding emissions in the measurement.	Ambiguity
Boundary Carbon Footprint of Transportation	There are different system boundaries that can be defined for a carbon footprint of freight, for example: taking all the transport elements in the chain or only between two segments. Or including empty trips or not. When these boundaries are not clear, different interpretations can arise.	Ambiguity

Model Structure

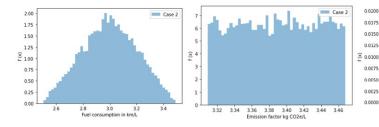
Source of Uncertainty	Explanation	Nature
Different Allocation Methods	There are multiple options to allocate emissions, the method that is used has a big influence on the carbon footprint of a shipment of the customer. In literature the ton-great circle distance is recommended. However, other papers suggest to use the most limiting factor and great circle distance. Other suggest only great circle distance or use another 'distance' type.	Ambiguity
Linear Approach Calculating Emissions	In literature it was found that the emissions N2O and CH4 have not exactly a linear relationship with energy use as CO2. This is a simplification of the model.	Epistemic
Assumptions of trip data	When the trip details are partially available, assumptions can be made to still make an estimate with all available information.	Epistemic

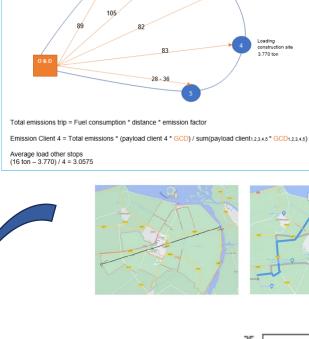
Parameter

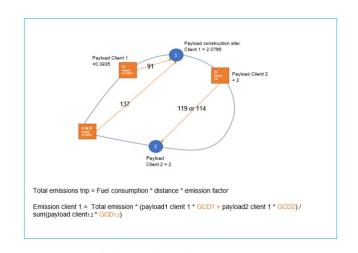

Cause of uncertainty	Explanation	Nature	
Measurement error emission factor TTW	Due to multiple measurements of the tank-to-wheel emission factors there will be a measurement error.	Epistemic	
Measurement error emission factor WTT	Due to multiple measurements of the well-to-tank emission factors there will be a measurement error.	Epistemic	
Different emission (intensity) factor databases	Due to the different databases there are multiple emission factors that can be used for specific situations.	Ambiguity	
Default emission intensity factors	The default emission intensity factor are the amount of CO2-equivalent per ton-km this is a general factor which makes it very generic and often deviates from reality.	Epistemic	
Conversion factor	When the payload is measured in different metrics than the preferred allocation method a conversion factor is needed. This factor has measurement errors.	Epistemic	

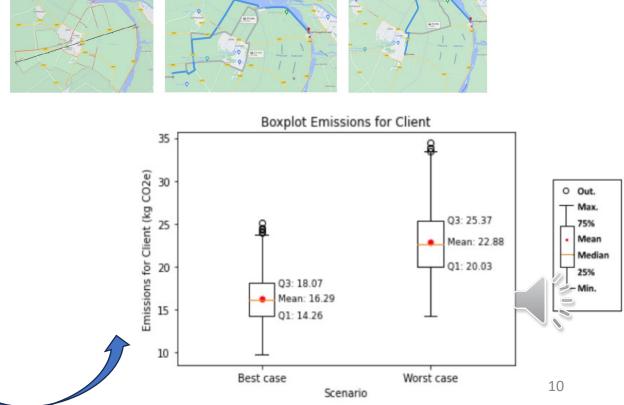
Input Data

	Data input	Cause of uncertainty		Nature
	Average energy consumption/unit-	Average value	Specific route characteristics, driving behaviour, environmental influences and when multiple vehicles are used; also the vehicle characteristics are less reflected in the output.	Stochastic
	km during a certain time	Unknown how average energy consumption/unit-km is calculated	When it is unknown how the average energy consumption/unit-km is calculated there is a possibility that wrong calculations are made.	Epistemic
	Average energy consumption/km during a certain time	Average value	Specific route characteristics, loading characteristics, driving behavior, environmental influences and when multiple vehicles are used; also the vehicle characteristics are less reflected in the output.	Stochastic
		Unknown how average energy consumption/km is calculated	When it is unknown how the average energy consumption/km is calculated there is a possibility that wrong calculations are made.	Epistemic
	Amount of energy	Measurement error amount of energy	When the fuel consumption is based on data from fuel cards there exists a measurement error, when someone tanked on the 31st of the month the data is included in the past month but is used in the next month.	Epistemic
	Default energy consumption/km	Approximation of fuel consumption	No specific route characteristics, driving behavior, environmental influences and vehicle characteristics of trip reflected in the output. Due to approximation effect of load included (default factors fuel consumption empty, full and capacity).	Stochastic
		Industry average	No specific route characteristics, loading characteristics, driving behaviour, environmental influences and vehicle characteristics of trip reflected in the output.	Stochastic
/	Energy type	Specifications or the energy type is unknown	It might be the case that for example the fuel type is defined as "(bio-)diesel" while there are multiple types of (bio-)diesel.	Epistemic
,	Origin, stops and destination shipment	Different interpretations of origin	Often the destination of a shipment is known, the origin of the transport of a shipment can have ambiguity when this is not defined clearly.	Ambiguity
		Aggregated level 'origin' and 'destinations' due to lack of knowledge or privacy reason	It might be that organizations only know the origin as 'city' and have no specifications in 'postal code' level.	Epistemic
		Information stops are unknown, or only a part is known.	When only a part of the trip data is known, or the trip data is unknown. Assumptions have to be made.	Epistemic
	Payload	Multiple definitions of "weight" payload	There could be different interpretations of tonne (packaging included or not).	Ambiguity
,		Information payloads are unknown, or only a part is known.	When only a part of the payload known, or the payload is unknown. Assumptions have to be made for the allocation of emissions.	Epistemic
:	Shipment type	Different interpretation shipment type	When the shipment type is different interpreted the wrong emission intensity factor can be applied.	Ambiguity
;	Distance	Multiple Definitions of Distance	Uncertainty can arise when these distances are assumed to be equal. For example, if the average fuel consumption is calculated using the number of liters and the total planned distance, and then multiplied by the number of kilometers actually driven, an incorrect calculation is made. In addition, it is questionable whether the carbon footprint can be compared when different distances are used.	Ambiguity
		Distance Unknown	When distance is unknown, an estimation must also be made, for which Google Maps can be used, which requires input of address data. When done in this way, the shortest feasible distance is calculated. This means that there is a deviation from the real driven distance.	Laistemic
		Different Interpretations of Vehicle Types	There are multiple ways and interpretations to describe a vehicle type. Due to this, the input for fuel consumption estimation can be wrong, or the wrong emission factor will be applied.	Sbiguity
	Vehicle Type	Vehicle Type Unknown	When the vehicle type is unknown, there will be a broad range of possible vehicle types. Due to this, the input for fuel consumption estimation can be wrong, or the wrong emission factor will be applied.	Epistemic
	Amount of Trips	The Amount of Trips are Unknown or Only a Part of the Trips is Known	When only a part of the total trips is known or the trip data is unknown, assumptions have to be made, for example, based on the total demand and capacity of a vehicle. This brings uncertainty in the amount of trips as input data.	Epistemic

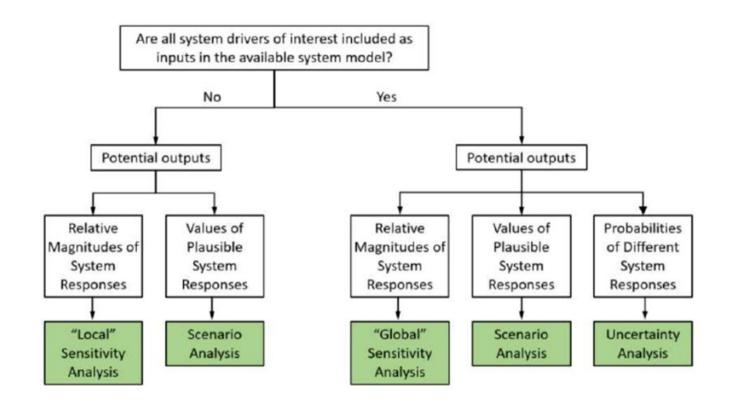

CONTEXTUAL			
Definition	e.g. what is carbon, what is a footprint?		
Logistics System boundary	scope, number of clients, trip, tour etc.		
MODEL STRUCTURE			
Allocation Methods	when co-loading, how to distribute		
Functional forms	linear/non-linear		
Activity assumptions	trip modelling constructs		
VARIABLES			
Fuel used	fuel type and consumption		
Trip characteristics	origin, destination, distance, shipment		
Vehicle characteristics	size and weight, payload		
PARAMETERS			
Emission factors	averages, WTT/TTW/WTW, sources		
Conversions	shipment to payload to vehicle, etc.		




Case study


- Construction logistics
- Partial data provided by companies
- Key unknowns: fuel consumption, trip patterns (case 1)

420


How to cope with uncertainty

Current scope

- Uncertainty measurement: tools
- Uncertainty reduction: guidelines
- Regulation? Trust in data?
- ISO alignment (aggregate!)

Necessary extensions

- Analyse impact on carrier selection
- Improve data storage systems
- Investigate uncertainties for other modes of transport

Main Results

- Uncertainty is not negligible
- Impact = (1) financial and (2) emissions
- Fundamental sources of uncertainty: definitions, data quality, model generalizability
- Prone to manipulation a factor 2 is possible
- Managing uncertainty is not trivial, given its complexity
- Incentives for uncertainty reduction?

