

Analysis of the market potential of electric road system in the Netherlands

Jasper Bakker Paul Buijs Jose A. Lopez

University of Groningen
Department of Operations

Setting the scene

- Strengthened EU plans for New trucks
 - ♦ 2030: 45% CO₂ compared to 2019
 - ♦ 2035: 65% CO₂ compared to 2019
 - ♦ 2040: 90% CO₂ compared to 2019
- For the Netherlands, this means
 - ♦ 16.000 to 24.000 e-trucks

EU Eyes 90% CO2 Cut By 2040 For Trucks

By Julianne Geiger - Feb 14, 2023, 12:30 PM CST

The European Commission proposed tighter CO2 rules for heavy-duty vehicles on Tuesday, mandating that all new trucks reduce emissions by 90% by 2040 and all new city buses emit zero emissions starting in just 7 years, by 2030, according to a statement from the European Commission.

Current status

Trucks in 2022							
Total	Diesel	Petrol	LPG	CNG	Electric		
60812	59443	734	267	168	200		
100%	97,7%	1,2%	0,3%	0,3%	0,3%		

Tractor for semi-trailer2022							
Total	Diesel	Petrol	LPG	CNG	Electric		
81508	81157	28	128	159	36		
100%	99,6%	0,03%	0,16%	0,20%	0,04%		

Long-distance transport

- Half of transport kilometres in the EU are journeys longer than 300 km
- Truck with range of 400-500 km, battery of 550-750 kWh required.
 - Battery weight more than 2.5 ton
 - 100 kW for overnight charging(5-7 h)
 - 1 MW for fast charging (30-45 min)
- Related barriers: range, TCO, and payload

Electric Road System (e-Roads)

ERS in practice

- ♦ A few test tracks from Siemens
 - ♦ USA: 1 miles near the ports of Los Angeles and Long Beach
 - ♦ GER: 5 km near Frankfurt

The A5 motorway segment in Hessen is one of three tests with catenary lines being conducted in Germany.

ERS in theorie

- "Analyse kosteneffectiviteit ERS voor Nederland" (van Ommeren et al., 2022)
 - ♦ High investment costs (€ 7.8 billion for a "comprehensive" network in the Netherlands)
 - Positive TCO for logistics service provider compared to BET (especially with a larger range)
 - ♦ Not calculation for small ERS
- Rekenregels
 - 1. At least 70% of day-distance via ERS
 - 2. Origin/destination max 30 km from ERS
 - 3. Sufficiently fixed driving pattern
 - 4. Minimum daily distance (90, 120, 150, 180 km)

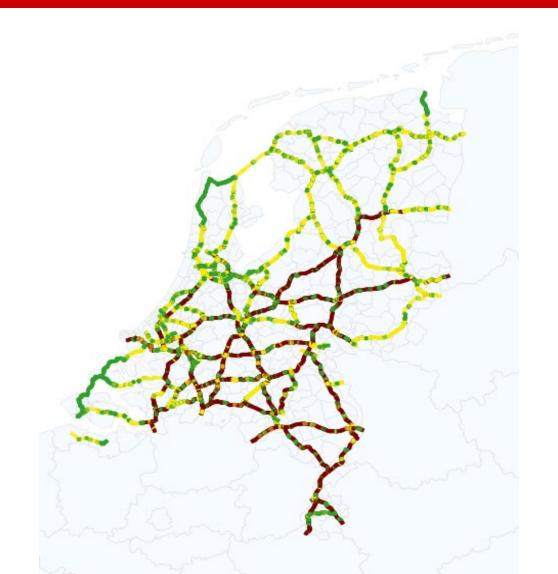
Research question

What is the effect of different ERS network configurations on the market

potential of the ERS infrastructure?

Research method

 Different design methods (density vs. corridor) and network sizes (200 vs. 400 km)


Market or no market?

Factor	Low	Middle	High	
1. Distance to ERS	30 km	90 km	150 km	
network	SU KIII	90 KIII	130 KIII	
2. Percentage over	70%	60%	50%	
ERS network	70%	60%	50%	
3. Willingness to	1 2	1 /	1 5	
make a detour	1,3	1,4	1,5	

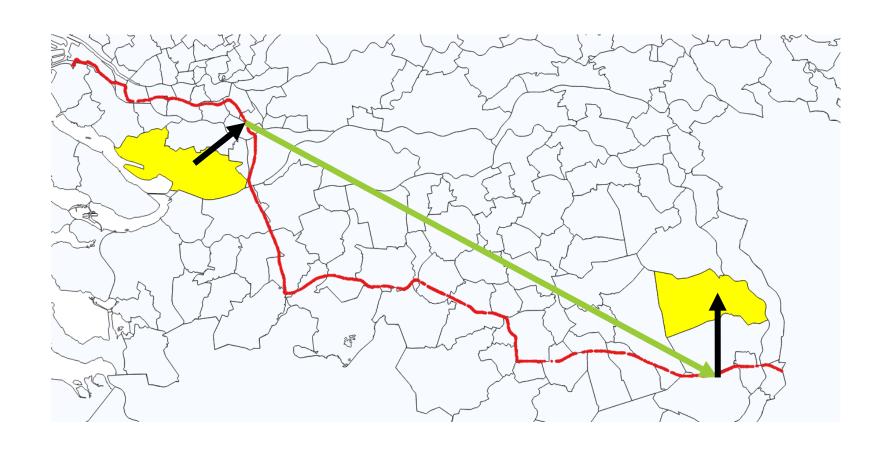
Data: traffic intensity

The first 200 km

Expansion to 400 km

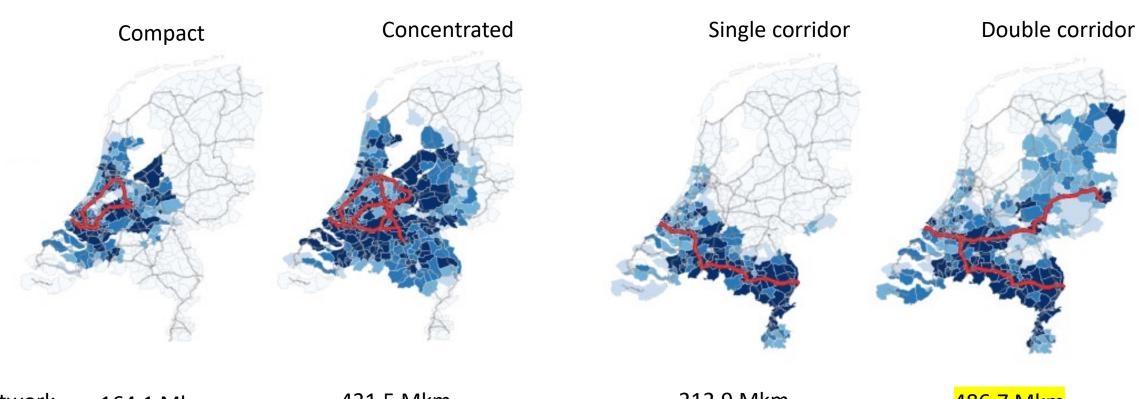
Data: origin-destination flows

BasGoed Database


Map divided in Zones

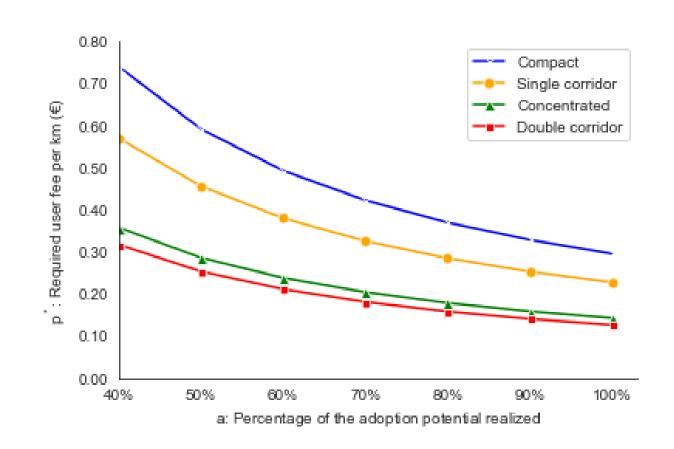
Trips between zones per year for heavy transport

Trip estimations



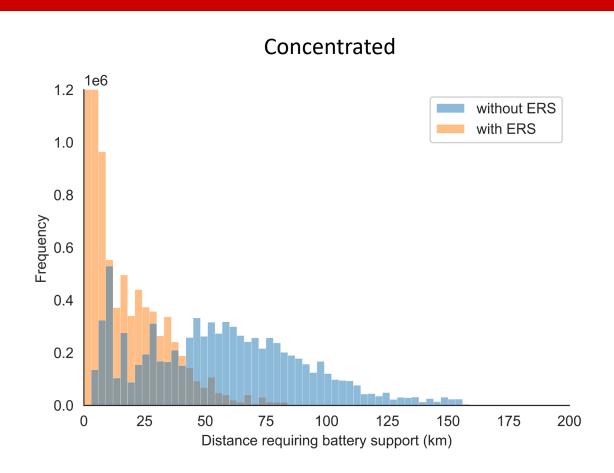
Results

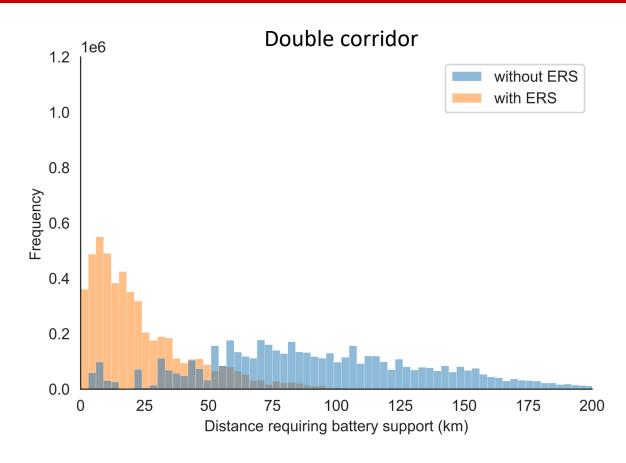
◆ A density-oriented design attracts a relatively high number of rides.


Km in network 164.1 MkmMarket potential 3.23%Avg Km network 41.8 km/trip

431.5 Mkm 6.81% 52.2 km/trip 212.9 Mkm 2.13% 82.4 km/trip 486.7 Mkm 4.29% 93.4 km/trip

Financial implications




- Input values
 - ♦ CAPEX M€3,1 perkm
 - ♦ OPEX 2% of CAPEX per year
 - ♦ 35 years lifespan
 - ♦ Interest of 4%
- Insights
 - Compact network most expensive
 - ♦ Corridor philosophy -> lower fee
 - ♦ € 0.25 -> 50% adoption needed

Battery support

Reduction on energy consumption on batteries:

658 GWh

732 GWh

Conclusions

- ◆ If ERS network is established, it will probably be expanded over time.
 - ♦ We looked at 200 and 400 km and a design focused on density and corridor.
 - ♦ The sooner a big market, the better.
- ◆ ERS network does not have to be comprehensive in order to tap into large market potential; But in order to reduce user costs, high adoption is needed
 - ♦ Corridor approach attracts more kilometres driven than dense networks
 - Dense philosophy attracts more (shorter) trips over the network