

Fernando Liesa Secretary General

10th International Workshop on Sustainable Road Freight

4th December 2023, Cambridge, UK

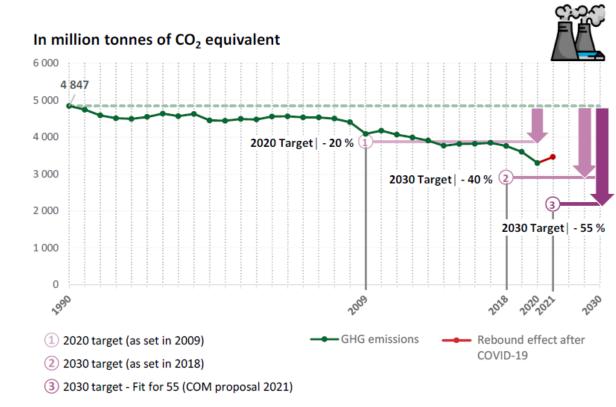
Robust decarbonisation and resilient logistics: Progress in the last decade and a roadmap to 2035

Special report

Special report 18/2023: EU climate and energy targets – 2020 targets achieved, but little indication that actions to reach the 2030

targets will be sufficient

26/06/2023 Energy, environment and climate action


Ref: https://www.eca.europa.eu/en/publication?ref=SR-2023-18

The EU achieved its 2020 climate and energy targets, but some member states did not contribute as expected to the targets. The Commission did not assess whether the EU had reached its targets as a result of its policies rather than as a result of external factors, such as the 2009 financial crisis and the COVID-19 pandemic. The EU's 2020 and 2030 greenhouse gas emissions targets do not include emissions embodied in imported goods or emissions from international aviation and

shipping. Little data is available on the cost to the EU budget, national budgets and private sector at which the EU achieved its targets. The National Energy and Climate Plans lack data on investment needs and funding sources to assess whether such plans are a sound basis to reach the 2030 targets.

Figure 1 – Evolution of the EU greenhouse gas emissions target

Source: ECA based on data from European Environment Agency. [Data for 2021 are provisional].

Parliament backs new rules to reduce air pollution from trucks and buses

45% emissions reduction from 2030 (increased from 30%)

65% emissions reduction from 2035

90% emissions reduction from 2040

Press Releases PLENARY SESSION

ENVI

21-11-2023 - 14:22

EU truck and bus CO₂ vote made even worse by absurd mandatory purchase idea

21 NOV 2023 · ENVIRONMENT

The European Parliament's plenary vote on CO2 emission targets for heavy-duty vehicles today sets unrealistic targets for zero-emission vehicles, feebly tries to factor the role of carbon-neutral fuels in decarbonisation, and attempts to bring the EU transport sector in line with totalitarian regimes by mandating purchase targets for transport operators.

CO2 targets for trucks and buses: much more needed than targets on paper, caution manufacturers

Content

- 1. Who is ALICE?
- 2. ALICE ambition: Support transition to ero emissions Logistics in an affordable way
- 3. EU programmes and projects to accelerate road transport electrification
- 4. ZEFES: Zero Emissions flexible vehicle platforms with modular powertrains serving the long-haul Freight Eco System
- 5. Final thoughts and way forward

Who is ALICE

ALICE, Alliance for Logistics Innovation through Collaboration in Europe

not-for-profit association, registered in Brussels, since 2015

Recognized by the European Commission as a *European Technology Platform*¹

1. European Technology Platforms, ETPs are industry-led stakeholder for that develop short to long-term research and innovation agendas and roadmaps for action at EU and national level to be supported by both private and public funding. More Info on ETPs http://www.etp-logistics.eu/wp-content/uploads/2021/03/Logistric-TP-recognition-SWD 2013 272 F1 STAFF WORKING PAPER EN V2 P1 735480.pdf

ALICE membership is bringing an holistic approach All key logistics stakeholders represented! Type of Organization Members **EU/International Associations** CHEP proℋımus PeG L'ORÉAL **Shippers & Retail** ESC **PEPSICO** COLRUYTGROUP **ELUPEG** Unilever **Logistics Service Providers, Courier** GEODIS sennder Gebrüder Weiss >LOGISTIC EALTH **Poste**italiane and Postal operators & Freight an post TRI : VIZOR GRUBER LOGISTICS **FERCAM** \ einride **Forwarders** INTERPORTO BOLOGNA **HUTCHISON**PORTS **ECO SLC** Ports, Hubs, Real Estate Port of Rotterdam **ECT ROTTERDAM** companies, Intermodal terminals WT EPORT Algeciras Puerto de & Transport/Energy Infrastructure VEV TRAFIKVERKET Platform Port de Barcelona Transport and industry vehicles, **PONERA LØGIFRUIT** KION VOLVO eucar packaging & material handling MARLO ALSIC SILENT PRODUCTBLOKS GreenRouter ptsclas **☼** DAC Transmetrics Information and Communication interlogistics RULEX NIXMOVE TRANSPOREON VILLY GeoPostcodes ERTICO SmartLoC Technologies & Consultancy NEC LastMile of text inlecom log sea // HACON PTV GROUP Logistics Initiative Hamburg © ČESMAD BOHEMIA **Regional & National Logistics** AMA **Smart Freight** Centre **Clusters & Associations CPLS** Logistop (C) LIMOWA IDIT≅ Fraunhofer U Stringer of Accessory in the Control of the Contr **Research and technology Centers** Misoilise F Amsterdam University of Applied Sciences Fraunhofer L C Q research SINTER TITENE CIRCOE SE TUDelft TNO innovation [7] unec mannova p **European Technology Platforms** MANUFUTURE-EU **ERTRAC** /PPPs

Department for Transport

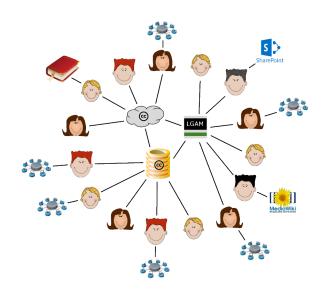
TÜBİTAK

TKI DINALOG

Member States and innovation

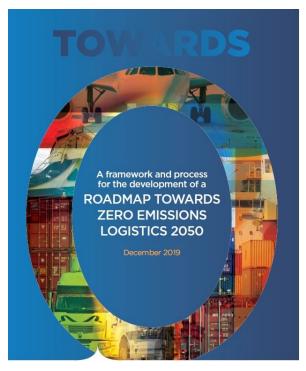
Funding*

bm


VINNOVA

European leading companies and experts implementing logistics and supply chain innovation

Mission: acceleration of decarbonization in affordable way



New concepts - influence - knowledge management - collaboration

ALICE Roadmap Towards Zero Emissions Logistics (2019)

Alliance for Logistics Innovation through Collaboration in Europe

Link to the document

FREIGHT DEMAND **GROWTH IS MANAGED**

- Supply chain restructuring
- Localization and nearshoring
- Decentralization of production and stockholding
- 3D printing
- Dematerialization
- Consumer behavior

TRANSPORT MODES ARE SMARTLY USED AND COMBINED

- Increased use of rail
- Increase use of short sea shipping and inland waterways
- Modular road transport
- Cargo bikes
- Multi-modal optimization
- Synchromodality

FLEETS AND ASSETS ARE SHARED AND USED TO THE MAX

- Load optimization
- Load consolidation and asset sharing
- Reduce empty moves
- Modular packaging and boxes
- Open transport networks and warehouses
- Increase storage density and energy efficiency

FLEETS AND ASSETS ARE ENERGY EFFICIENT

technologies

and vessels

High capacity

trailers

Fleet

vehicles / duo

Driving behavior

Fleet operation

maintenance

Efficient vehicles

FLEETS AND ASSETS

USE LOWEST

EMISSIONS ENERGY

SOURCE FEASIBLE

- Cleaner and Electric / hybrids efficient
 - · Solar / Wind
 - Biofuels
 - Hydrogen
 - CNG/bio-LNG
 - Cleaner diesel
 - Fuel management

© Smart Freight Centre and ALICE-ETP based on A. McKinnon 'Decarbonizing Logistics' (2018)

Roadmap Towards Zero Emissions Logistics 2050. ALICE (2019) www.etp-alice.eu

Report

credible emissions and set science-based reduction targets

Reduce

emissions by developing and implementing action plans

Collaborate

and advocate for sector-wide uptake

Achieving the transition for assets, energy sources, infrastructures, vehicles, and vessels is possible by 2040-2050 but we need short term success for 2030 ambitions

A holistic and integrated innovation approach addressing the vehicles, the energy, the infrastructure and operations is needed

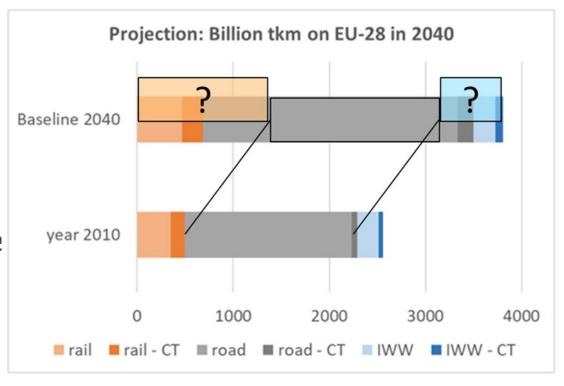
Affordable alternatives to fossil fuel are required and market adoption accelerated by using taxation revenues for market incentives

Carbon measurement and reporting is key

Rail and inland waterways need to truly become part of the solution

Clean Hydrogen Partnership

HE partnerships


Projects

Challenges transport and logistics, fit for 55

- Reduction CO2 for HDV 2019 2030, 45% and 2019 2035, 65%*
- Transport and logistics efficiency, do more with less
- Utilisation of existing infrastructure (road, rail, iww)
- ©Diversity within Europe at cross border, national, regional leve
 - legislative framework,
 - topography and available modes

Funded by

the European Union

source: DLR; results of the model Demo-GV

ZEFES projects fact sheet

eucar

Stakeholders

OEMs:

Tier 1/Tier 2 suppliers:

EXCLEPA earpa

Shippers & retail:

ALICE & IRU members

Providers of systems for

charging and refuelling

infrastructure:

CPOs, IRU members

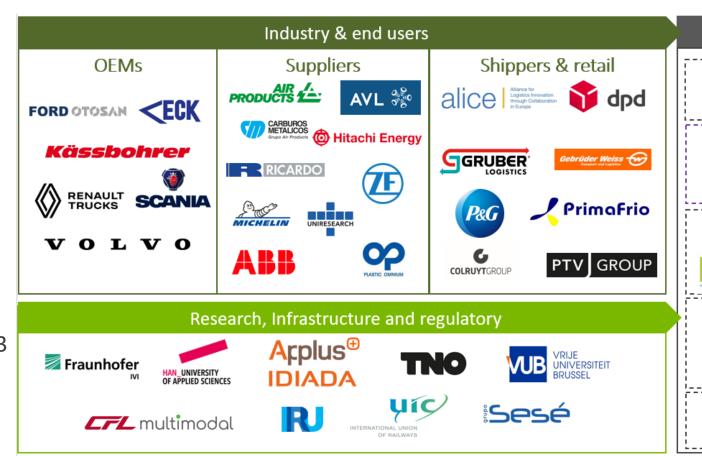
Policy / Authorities:

(A) UNECE

TRAFIKVERKET

40 Partners

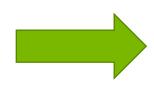
- € 6 OEM's
- **14 Suppliers**
- 11 Shippers & retail
- 9 Research


23 Million EU funding

39 Million project costs

Start date 01 January 2023

Duration 42 Months



Current challenges BEV/FCEV

- BEVs and FCEVs have a limited range
- Available payload is affected (e.g. by the weight of the batteries)
- Lack of available energy infrastructure (charging points and hydrogen filling stations)
- Higher costs due to energy prices and low-scale production

Incorporation into daily fleet operations is affected by all of the above and their interdependencies!

Ambition

Create a pathway for long-haul BEVs and FCEVs to become more affordable and reliable, more energy efficient, with a longer range per single charge and reduced charging times able to meet the user's needs

Develop technologies which can deliver promised benefits (easy handling, similar driving hours & charging/hydrogen refuelling stations, high speeds and ability to operate in complex transport supply chains).

Execute real-world demonstrations of long-haul BEVs and FCEVs across Europe to take zero-emission long-haul goods transport in Europe to the next level.

Make the **mapping** of flexible and abundant **charging/refuelling points** and novel charging concepts.

Create novel tools for **fleet management** to support the rising number of long-haul BEVs and FCEVs vehicles in the logistics supply chains, in the form of a **Digital Twin**.

15 use cases throughout Europe, each focussing a specific logistic operation

Finnland Norwegen Sweden **OVAKO** Estland SCANIA Primafrio Dänemark Vereinigtes Königreich Belarus :Sesé Ukraine GRUBER :Sesé Portugal Madrid PrimaFrio

D1.2 Defined Use Cases, Target metrics and needs

https://zefes.eu/defined-use-cases-target-metrics-and-needs/

Needs and requirements as part of ZEFES

ZE-HDV: battery and fuel cell electric truck-trailer combinations (GCW +36 tons) for the whole **ZE-HDV ecosystem**.

59 Needs and requirements in total, over 6 categories

- 14 related to Truck-trailer technology (technical)

- 4 related to Fleet integration (digital twin)

- 6 related to Safety and acceptance

25 related to Infrastructure

9 related to Viable Business case

1 related to Legal barriers

SHG Symposium 25th October 2023 Validation Needs and requirements

Session I Supply Chain Needs Category I - Truck-trailer technology

	Need and/or requirement	Important	Not relevant	Comments
Т1	The truck-trailer combination is seen as one asset to determine whether a mission is feasible, since both assets can consume and store energy. The energy consumption for a mission is depending on the characteristics of both.			
T2	The driving range of the ZE-HDV is sufficient for the logistic operations and can vary from use case to use case.			
Т3	The transport capacity is not limited, both in payload and availability of the truck.			
T4	ZE trailers are available. (cooling and tailgate electrified)			
T5	The truck-trailer combination is modular , and the specifications / capabilities can be adjusted to the needs of the end-user.			
Т6	The energy stored on the truck-trailer combination is known, especially for the driver.			
Т7	Energy consumption of the truck-trailer combination can be predicted given the mission parameters and weather conditions.			
Т8	It is clear what the impact of weather would be on the capabilities of the truck trailer combination.			
Т9	Trucks and trailers are deployable in different modes . (water and rail) (<i>Technical point of view</i>)			
T10	Knowledge and resources are available in the logistic company to implement and operate ZE-HDV.			
T11	The truck end-user trusts the new technology.			
T12	Maintenance can be organised.			
T13	The trucks are connected (digitalisation: communication, V2X, is possible)			
T14	A contingency plan for transport with ZE-HDV can be drafted (power blackouts)			

Remarks/ missing needs and requirements

Summary of the recommendations

59 identified needs and requirement on 6 topics

14 related to Truck-trailer technology (technical)

Technical			
The truck-trailer combination is seen as one asset to determine whether a mission is feasible, since both assets can <i>consume</i> and <i>store</i> energy. The energy consumption for a mission is depending on the characteristics of both.			
The driving range of the ZE-HDV is sufficient for the logistic operations and can vary from use case to use case.			
The transport capacity is not limited, both in payload and technical availability (reliability) of the truck.			
ZE trailers are available. (cooling and tailgate electrified)			
The truck-trailer combination is modular , and the specifications / capabilities can be adjusted to the needs of the end-user.			
The energy stored on the truck-trailer combination is known, especially for the driver.			
Energy consumption of the truck-trailer combination can be predicted given the mission parameters and weather conditions.			
It is clear what the impact of weather would be on the capabilities of the truck trailer combination.			
Trucks and trailers are deployable in different modes. (water and rail) (Technical point of view)			
Knowledge and resources are available in the logistic company to implement and operate ZE-HDV.			
The truck end-user trusts the new technology.			
Maintenance can be organised.			
The trucks are connected (digitalisation: communication, V2X, is possible)			
A contingency plan for transport with ZE-HDV can be drafted (power blackouts)			

4 related to Fleet integration (digital twin)

	Integration in logistic operation			
F1	The ZE-HDV (fleet) can be implemented in an existing fleet by a fleet management system that takes into account the capabilities of ZE-HDV.			
F2	It is clear where to charge/fuel and how it will fit in the logistic operation.			
F3	It is clear what is the impact of charging/refuelling time will be on the logistics operation.			
F4	It is clear what is the impact of less payload and availability (maintenance) will be on the logistics operation.			

6 related to Safety and acceptance

	Safety and social acceptace			
S1	A methodology to determine, if the ZE-HDV run on renewable energy (electricity and hydrogen) is available.			
S2	Emissions over the full life cycle of a truck-trailer combination is known.			
S3	Vehicle must be safe, both while driving and charging/fuelling.			
S4	It is clear how the job of truck driver will change, and how the driver will be trained to use ZE-HDV it in a safely manner.			
S 5	It is clear what to do in case of emergency, especially for the driver.			
S6	Safety regulations and precautions are known, especially for the driver, for first responders it is clear the vehicles are ZE-HDV.			

1 related to Legal barriers

	Legal barriers		
L1	Innovative technologies (trucks and infrastructure) can be implemented since a regulative framework exists.		

Why do we think that the future must look like the past?

- Market for heavy duty electric trucks is expected to be developed rapidly, however delays in trucks delivery still exists, a lot of uncertainty on charging infrastructure is there and it is unlikely to change in the next 2-3 years.
- Medium, long term, the bottleneck could be on grids when adoption is beyond 10-20% and required grids upgrades projects could need 5-7 years to be realized.
- TCO assessment vs portfolio of mission profiles/use cases assessment for fleets
 - Implication for smaller fleets?
- LCA, energy mix and actual contribution to GHG emissions reduction targets
- Corporate Sustainability Reporting Directive (CSRD) as a lever
 - 2024 financial year for reports published in 2025.
 - Concrete action plans need to be part of the reporting for companies in scope

Market in the early stages and requires acceleration if we want to start mass adoption by 2030

Challenges:

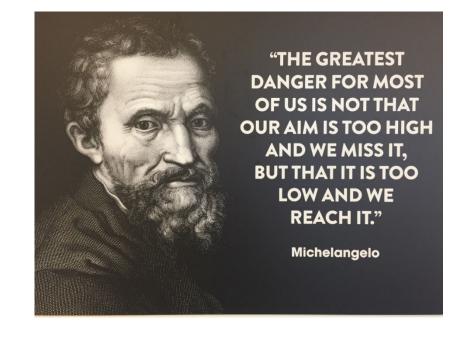
- how to address the interdependencies across the sectors involved?
- how to move from "project" base to reliable and scalable solutions?

Recharging and Hydrogen refuelling infrastructure Green/ **Vehicles** renewable availability & energy & performance grid Business case for transport companies and buyers (TCO)

Mission

Accelerate Road Transport (HDVs)

Decarbonization


Collaboration is key to address interdependencies

We need lighthouse integrated
projects involving the full value chain
(i.e. energy, infrastructure, OEMs and
transportation companies/logistics)
and substantial amounts of trucks and
companies operating in European
corridors/regions

Thank you!

The Best Way To Predict The Future Is To Create It!

Source: President Abraham Lincoln

If you want to go fast, go alone If you want to go far, go together

