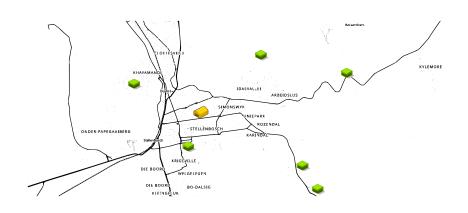
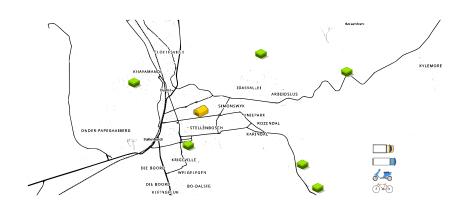
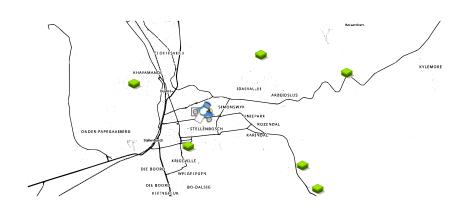
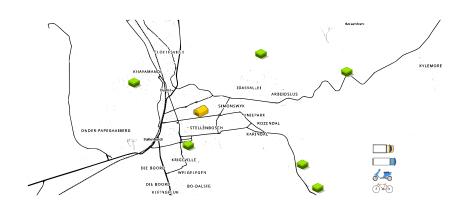
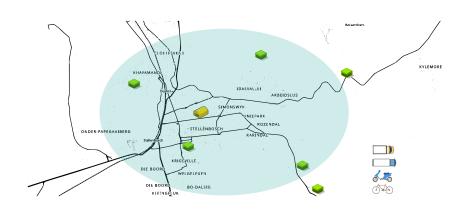

An agent-based approach towards modelling cost versus CO_2 emission trade-offs in multi-modal middle-mile logistics

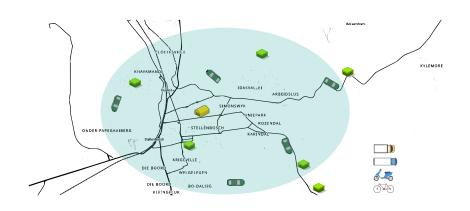

Dominic Huskisson

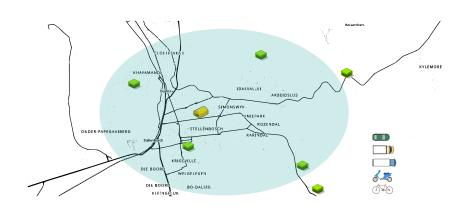



Stellenbosch Unit for Operations Research in Engineering Department of Industrial Engineering



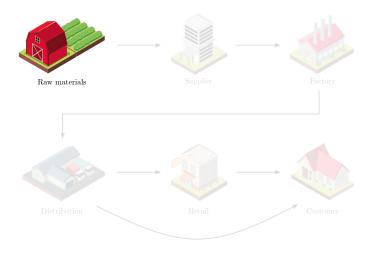


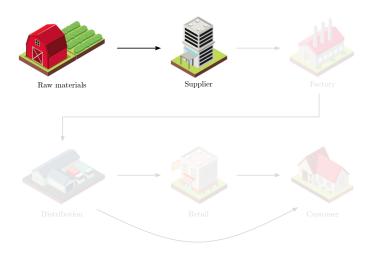


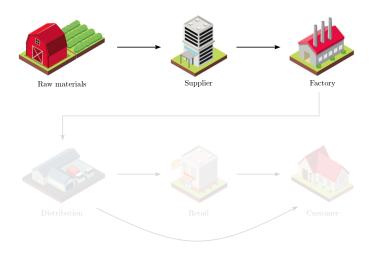


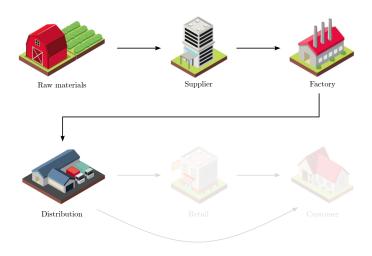
- The case for a solution
- Formalised research aim
- Briefly explain simulation
- Expound on agent-based modelling
- Case Study
- KPI's
- Preliminary results

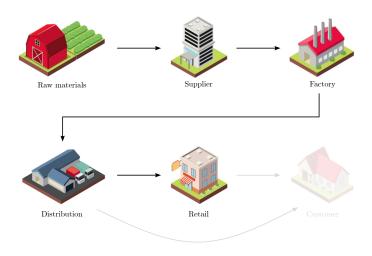
- The case for a solution
- Formalised research aim
- Briefly explain simulation
- Expound on agent-based modelling
- Case Study
- KPI's
- Preliminary results

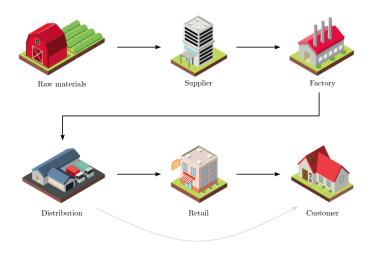

- The case for a solution
- Formalised research aim
- Briefly explain simulation
- Expound on agent-based modelling
- Case Study
- KPI's
- Preliminary results

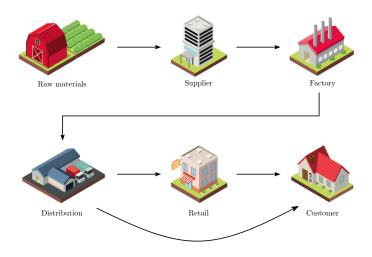

- The case for a solution
- Formalised research aim
- Briefly explain simulation
- Expound on agent-based modelling
- Case Study
- KPI's
- Preliminary results

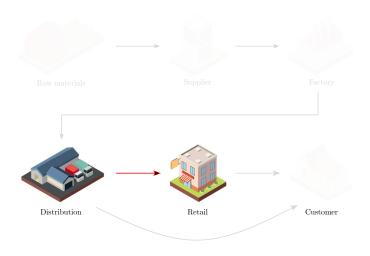

- The case for a solution
- Formalised research aim
- Briefly explain simulation
- Expound on agent-based modelling
- Case Study
- KPI's
- Preliminary results

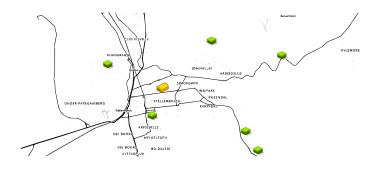

- The case for a solution
- Formalised research aim
- Briefly explain simulation
- Expound on agent-based modelling
- Case Study
- KPI's
- Preliminary results

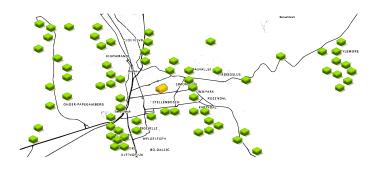

- The case for a solution
- Formalised research aim
- Briefly explain simulation
- Expound on agent-based modelling
- Case Study
- KPI's
- Preliminary results











Primary aim:

Primary aim:

• Design a **generic framework** for providing decision support pertaining to the middle-mile delivery logistics of a distributor.

Primary aim:

• Design a **generic framework** for providing decision support pertaining to the middle-mile delivery logistics of a distributor.

Secondary aim:

Primary aim:

• Design a **generic framework** for providing decision support pertaining to the middle-mile delivery logistics of a distributor.

Secondary aim:

• Implement (on a personal computer) an instantiation of the framework capable of analysing the solutions to an **agent-based model** formulated over a rolling planning horizon.

- time-stamped commodity demand volumes,
- time windows.
- details about a set of delivery modes,
- data describing the fleets of available delivery vehicles, and
- information related to the delivery transport infrastructure.

- time-stamped commodity demand volumes,
- time windows,
- details about a set of delivery modes,
- data describing the fleets of available delivery vehicles, and
- information related to the delivery transport infrastructure.

- time-stamped commodity demand volumes,
- time windows,
- details about a set of delivery modes,
- data describing the fleets of available delivery vehicles, and
- information related to the delivery transport infrastructure.

- time-stamped commodity demand volumes,
- time windows.
- details about a set of delivery modes,
- data describing the fleets of available delivery vehicles, and
- information related to the delivery transport infrastructure.

Inputs:

- time-stamped commodity demand volumes,
- time windows,
- details about a set of delivery modes,
- data describing the fleets of available delivery vehicles, and
- information related to the delivery transport infrastructure.

Inputs:

- time-stamped commodity demand volumes,
- time windows,
- details about a set of delivery modes,
- data describing the fleets of available delivery vehicles, and
- information related to the delivery transport infrastructure.

Objective:

• Attain high-quality trade-offs between minimising the total operational cost and minimising the environmental impact of the entire delivery assignment and routing schedule.

Objective:

• Attain high-quality trade-offs between minimising the total operational cost and minimising the environmental impact of the entire delivery assignment and routing schedule.

Decision variables:

Objective:

• Attain high-quality trade-offs between minimising the total operational cost and minimising the environmental impact of the entire delivery assignment and routing schedule.

Decision variables:


• Vehicle types, and

Objective:

• Attain high-quality trade-offs between minimising the total operational cost and minimising the environmental impact of the entire delivery assignment and routing schedule.

Decision variables:

- Vehicle types, and
- the proportion of the various vehicle types.

Outputs:

• an assignment of vehicles of the appropriate transportation modes to service the set of retailers,

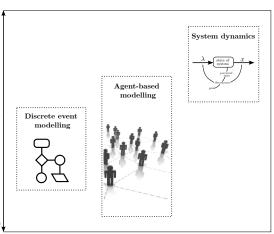
Outputs:

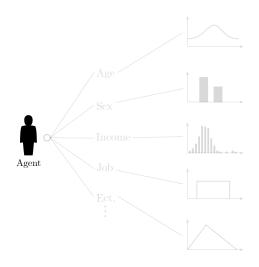
- an assignment of vehicles of the appropriate transportation modes to service the set of retailers,
- delivery routes, and

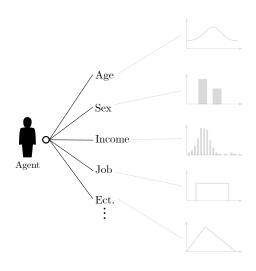
Outputs:

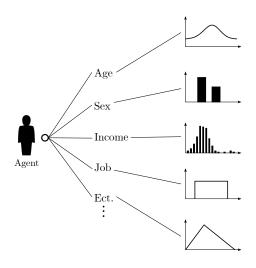
- an assignment of vehicles of the appropriate transportation modes to service the set of retailers,
- delivery routes, and
- delivery schedules.

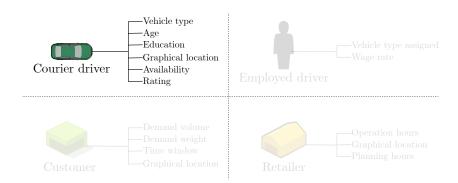
Simulation

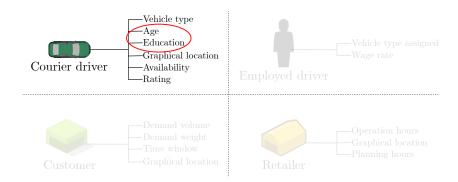


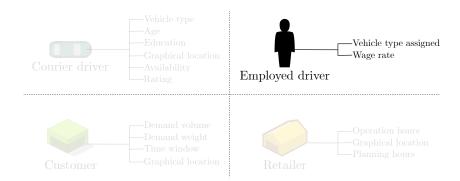

Simulation

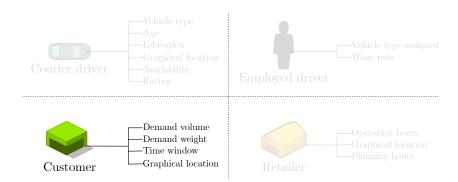

High abstraction level (minimum detail, macro level, aggregates, feedback loops)

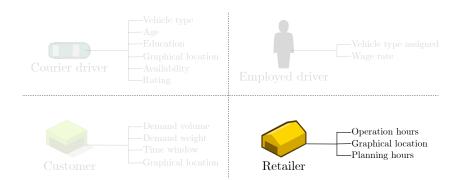

Medium abstraction level (medium detail, meso level)

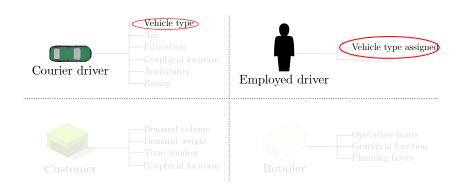

Low abstraction level (Maximum detail, micro level, individual objects, exact details)

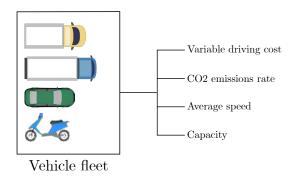




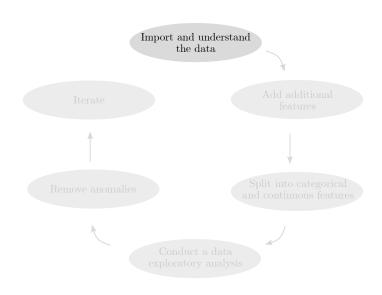


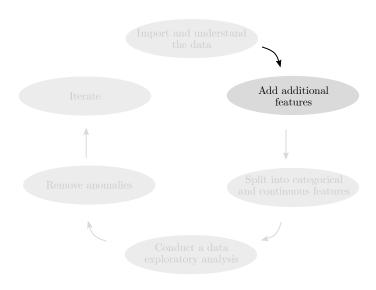


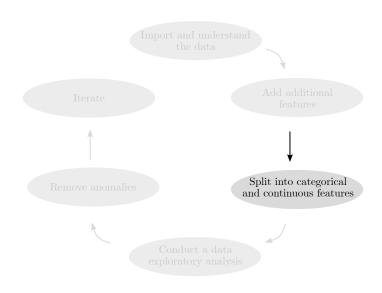


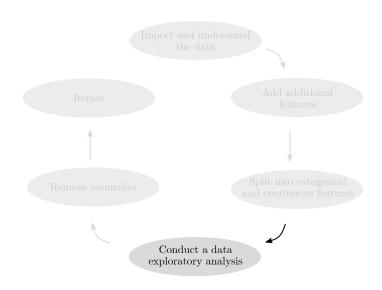


Index	Geocode	Suburb	Qty	Total Boxes	Created
1	-26.2509473355679,	Lenasia DC - Moletsane	7	1	2022/01/11
	27.8551217068739				06:25
2	-26.2557441553767,	Lenasia DC - Moletsane	7	1	2022/01/11
	27.8530539252317				06:38
3	-26.1532047261376,	Lenasia DC - Kagiso	6	1	2022/01/11
	27.7810127336621				07:00
4	-26.4581090940578,	Lenasia DC - Lawley	7	1	2022/01/11
	27.7663940112543				07:00
5	-26.2127842718698,	East Rand DC - Springs	7	1	2022/01/11
	28.4858571271261				07:00
6	-25.2590599916125,	PTA - Hammanskraal	11	1	2022/01/11
	28.1325106949337				07:00
7	-25.5886563413439,	PTA - Garankuwa	5	1	2022/01/11
	27.9792621369627				07:00
8	-26.2150966221058,	Lenasia DC -	11	1	2022/01/11
	27.8769849636938	Meadowlands			07:00
9	-26.2054804998827,	Lenasia DC -	12	1	2022/01/11
	27.8786803248904	Meadowlands			07:00
10	-26.2033047913516,	Lenasia DC -	12	1	2022/01/11
	27.8782397373997	Meadowlands			07:00

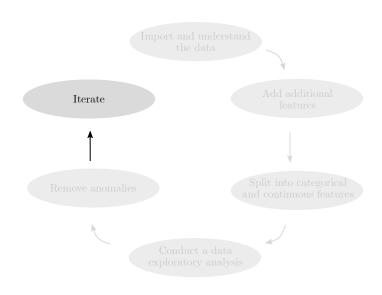

Index	Geocode	Suburb	Qty	Total Boxes	Created
1	-26.2509473355679,	Lenasia DC - Moletsane	7	1	2022/01/11
	27.8551217068739				06:25
2	-26.2557441553767,	Lenasia DC - Moletsane	7	1	2022/01/11
	27.8530539252317				06:38
3	-26.1532047261376,	Lenasia DC - Kagiso	6	1	2022/01/11
	27.7810127336621				07:00
4	-26.4581090940578,	Lenasia DC - Lawley	7	1	2022/01/11
	27.7663940112543				07:00
5	-26.2127842718698,	East Rand DC - Springs	7	1	2022/01/11
	28.4858571271261				07:00
6	-25.2590599916125,	PTA - Hammanskraal	11	1	2022/01/11
	28.1325106949337				07:00
7	-25.5886563413439,	PTA - Garankuwa	5	1	2022/01/11
	27.9792621369627				07:00
8	-26.2150966221058,	Lenasia DC -	11	1	2022/01/11
	27.8769849636938	Meadowlands			07:00
9	-26.2054804998827,	Lenasia DC -	12	1	2022/01/11
	27.8786803248904	Meadowlands			07:00
10	-26.2033047913516,	Lenasia DC -	12	1	2022/01/11
	27.8782397373997	Meadowlands			07:00


$_{\rm Index}$	Geocode	Suburb	Qty	Total Boxes	Created
1	-26.2509473355679,	Lenasia DC - Moletsane	7	1	2022/01/11
	27.8551217068739				06:25
2	-26.2557441553767,	Lenasia DC - Moletsane	7	1	2022/01/11
	27.8530539252317				06:38
3	-26.1532047261376,	Lenasia DC - Kagiso	6	1	2022/01/11
	27.7810127336621				07:00
4	-26.4581090940578,	Lenasia DC - Lawley	7	1	2022/01/11
	27.7663940112543				07:00
5	-26.2127842718698,	East Rand DC - Springs	7	1	2022/01/11
	28.4858571271261				07:00
6	-25.2590599916125,	PTA - Hammanskraal	11	1	2022/01/11
	28.1325106949337				07:00
7	-25.5886563413439,	PTA - Garankuwa	5	1	2022/01/11
	27.9792621369627				07:00
8	-26.2150966221058,	Lenasia DC -	11	1	2022/01/11
	27.8769849636938	Meadowlands			07:00
9	-26.2054804998827,	Lenasia DC -	12	1	2022/01/11
	27.8786803248904	Meadowlands			07:00
10	-26.2033047913516,	Lenasia DC -	12	1	2022/01/11
	27.8782397373997	Meadowlands			07:00


Index	Geocode	Suburb	Qty	Total Boxes	Created
1	-26.2509473355679,	Lenasia DC - Moletsane	7	1	2022/01/11
	27.8551217068739				06:25
2	-26.2557441553767,	Lenasia DC - Moletsane	7	1	2022/01/11
	27.8530539252317				06:38
3	-26.1532047261376,	Lenasia DC - Kagiso	6	1	2022/01/11
	27.7810127336621				07:00
4	-26.4581090940578,	Lenasia DC - Lawley	7	1	2022/01/11
	27.7663940112543				07:00
5	-26.2127842718698,	East Rand DC - Springs	7	1	2022/01/11
	28.4858571271261				07:00
6	-25.2590599916125,	PTA - Hammanskraal	11	1	2022/01/11
	28.1325106949337				07:00
7	-25.5886563413439,	PTA - Garankuwa	5	1	2022/01/11
	27.9792621369627				07:00
8	-26.2150966221058,	Lenasia DC -	11	1	2022/01/11
	27.8769849636938	Meadowlands			07:00
9	-26.2054804998827,	Lenasia DC -	12	1	2022/01/11
	27.8786803248904	Meadowlands			07:00
10	-26.2033047913516,	Lenasia DC -	12	1	2022/01/11
	27.8782397373997	Meadowlands			07:00


Index	Geocode	Suburb	Qty	Total Boxes	Created
1	-26.2509473355679,	Lenasia DC - Moletsane	7	1	2022/01/11
	27.8551217068739				06:25
2	-26.2557441553767,	Lenasia DC - Moletsane	7	1	2022/01/11
	27.8530539252317				06:38
3	-26.1532047261376,	Lenasia DC - Kagiso	6	1	2022/01/11
	27.7810127336621				07:00
4	-26.4581090940578,	Lenasia DC - Lawley	7	1	2022/01/11
	27.7663940112543				07:00
5	-26.2127842718698,	East Rand DC - Springs	7	1	2022/01/11
	28.4858571271261				07:00
6	-25.2590599916125,	PTA - Hammanskraal	11	1	2022/01/11
	28.1325106949337				07:00
7	-25.5886563413439,	PTA - Garankuwa	5	1	2022/01/11
	27.9792621369627				07:00
8	-26.2150966221058,	Lenasia DC -	11	1	2022/01/11
	27.8769849636938	Meadowlands			07:00
9	-26.2054804998827,	Lenasia DC -	12	1	2022/01/11
	27.8786803248904	Meadowlands			07:00
10	-26.2033047913516,	Lenasia DC -	12	1	2022/01/11
	27.8782397373997	Meadowlands			07:00

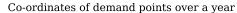

Index	Geocode	Suburb	Qty	Total Boxes	Created
1	-26.2509473355679,	Lenasia DC - Moletsane	7	1	2022/01/11
	27.8551217068739				06:25
2	-26.2557441553767,	Lenasia DC - Moletsane	7	1	2022/01/11
	27.8530539252317				06:38
3	-26.1532047261376,	Lenasia DC - Kagiso	6	1	2022/01/11
	27.7810127336621				07:00
4	-26.4581090940578,	Lenasia DC - Lawley	7	1	2022/01/11
	27.7663940112543				07:00
5	-26.2127842718698,	East Rand DC - Springs	7	1	2022/01/11
	28.4858571271261				07:00
6	-25.2590599916125,	PTA - Hammanskraal	11	1	2022/01/11
	28.1325106949337				07:00
7	-25.5886563413439,	PTA - Garankuwa	5	1	2022/01/11
	27.9792621369627				07:00
8	-26.2150966221058,	Lenasia DC -	11	1	2022/01/11
	27.8769849636938	Meadowlands			07:00
9	-26.2054804998827,	Lenasia DC -	12	1	2022/01/11
	27.8786803248904	Meadowlands			07:00
10	-26.2033047913516,	Lenasia DC -	12	1	2022/01/11
	27.8782397373997	Meadowlands			07:00

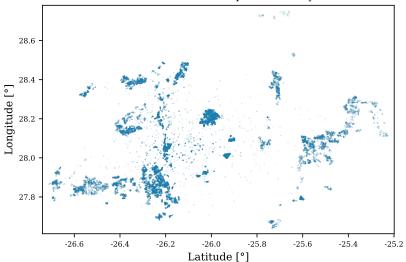


Case Study

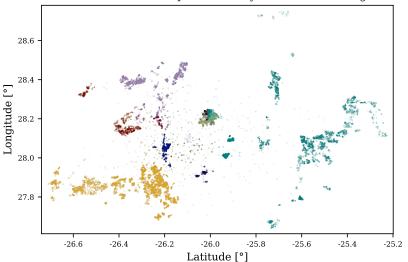
More about the data:

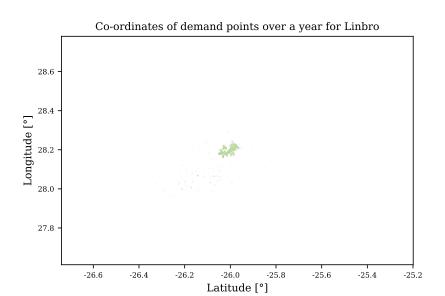
- 204789 entries over the year,
- 333 operating days per year,
- 7 depots delivering to distinct regions,
- each depot delivers to between 80-350 retailers per day,
- requires a metaheuristic.

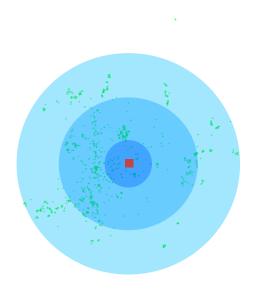

- 204789 entries over the year,
- 333 operating days per year,
- 7 depots delivering to distinct regions,
- each depot delivers to between 80-350 retailers per day,
- requires a metaheuristic.

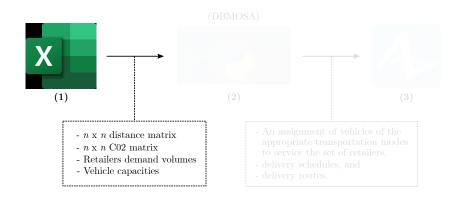

- 204789 entries over the year,
- 333 operating days per year,
- 7 depots delivering to distinct regions,
- each depot delivers to between 80-350 retailers per day,
- requires a metaheuristic.

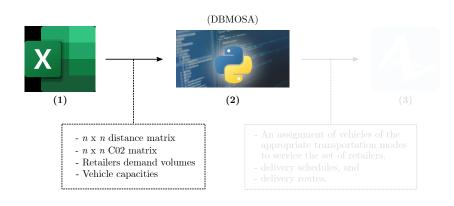
- 204789 entries over the year,
- 333 operating days per year,
- 7 depots delivering to distinct regions,
- each depot delivers to between 80-350 retailers per day,
- requires a metaheuristic.

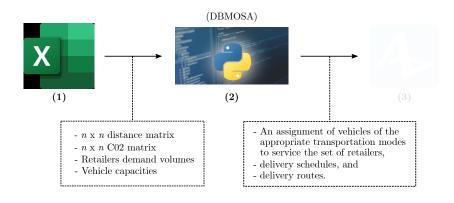

- 204789 entries over the year,
- 333 operating days per year,
- 7 depots delivering to distinct regions,
- each depot delivers to between 80-350 retailers per day,
- requires a metaheuristic.

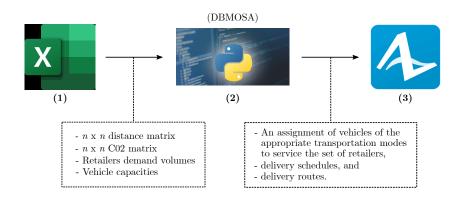

- 204789 entries over the year,
- 333 operating days per year,
- 7 depots delivering to distinct regions,
- each depot delivers to between 80-350 retailers per day,
- requires a metaheuristic.

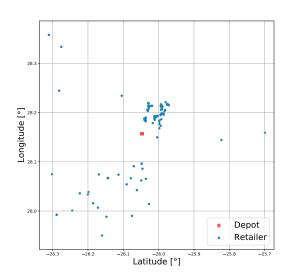


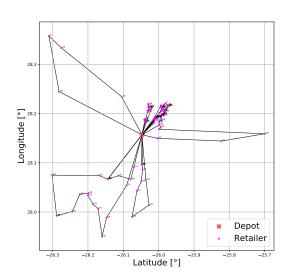

Co-ordinates of demand points over a year for clustered regions

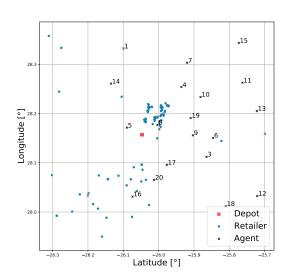


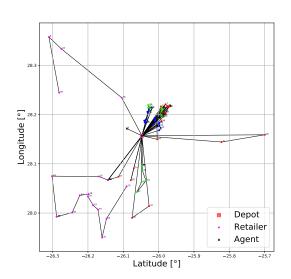












- Vehicle types, and
- the proportion of the various vehicle types.
- What proportion of courier drivers starts to become unhelpful?
- What proportion of electric vans is beneficial to reduce C02?
- What is the monetary cost of reducing C02 of the various vehicle type assignments and their corresponding proportions?

- Vehicle types, and
- the proportion of the various vehicle types.
- What proportion of courier drivers starts to become unhelpful?
- What proportion of electric vans is beneficial to reduce C02?
- What is the monetary cost of reducing C02 of the various vehicle type assignments and their corresponding proportions?

- Vehicle types, and
- the proportion of the various vehicle types.
- What proportion of courier drivers starts to become unhelpful?
- What proportion of electric vans is beneficial to reduce C02?
- What is the monetary cost of reducing C02 of the various vehicle type assignments and their corresponding proportions?

- Vehicle types, and
- the proportion of the various vehicle types.
- What proportion of courier drivers starts to become unhelpful?
- What proportion of electric vans is beneficial to reduce C02?
- What is the monetary cost of reducing C02 of the various vehicle type assignments and their corresponding proportions?

- Vehicle types, and
- the proportion of the various vehicle types.
- What proportion of courier drivers starts to become unhelpful?
- What proportion of electric vans is beneficial to reduce C02?
- What is the monetary cost of reducing C02 of the various vehicle type assignments and their corresponding proportions?

- Vehicle types, and
- the proportion of the various vehicle types.
- What proportion of courier drivers starts to become unhelpful?
- What proportion of electric vans is beneficial to reduce C02?
- What is the monetary cost of reducing C02 of the various vehicle type assignments and their corresponding proportions?

- Vehicle types, and
- the proportion of the various vehicle types.
- What proportion of courier drivers starts to become unhelpful?
- What proportion of electric vans is beneficial to reduce C02?
- What is the monetary cost of reducing C02 of the various vehicle type assignments and their corresponding proportions?

Preliminary results

- Various mixed vehicle fleet compositions achieve higher quality results than homogenous fleets,
- the addition of courier vehicles consistently reduces operating costs by between 10 20%, and
- the model solution executes in polynomial time.

Preliminary results

- Various mixed vehicle fleet compositions achieve higher quality results than homogenous fleets,
- the addition of courier vehicles consistently reduces operating costs by between 10 20%, and
- the model solution executes in polynomial time.

Preliminary results

- Various mixed vehicle fleet compositions achieve higher quality results than homogenous fleets,
- the addition of courier vehicles consistently reduces operating costs by between 10 20%, and
- the model solution executes in polynomial time.

References

Malan C, 2021, Agent-based approach to customer crowd-shipping, Stellenbosch University.

Banerjee A & Siemens F, 2009, Innovations and Strategies for Logistics and Supply Chains: Technologies, Business Models and Risk Management., Logistics of E-Groceries.de, **20**, pp. 44–56.

ARCHETTI C & SAVELSBERGH M & SPERANZA M, 2011, The vehicle routing problem with occasional drivers, European Journal of Operational Research, **254**, pp. 472–480.