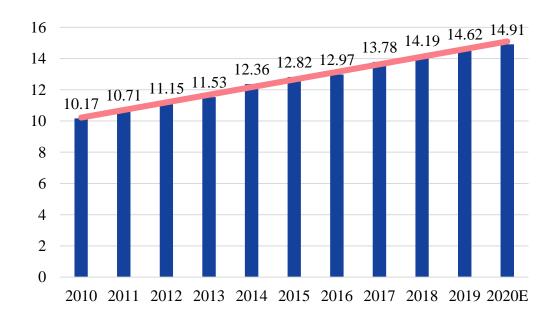


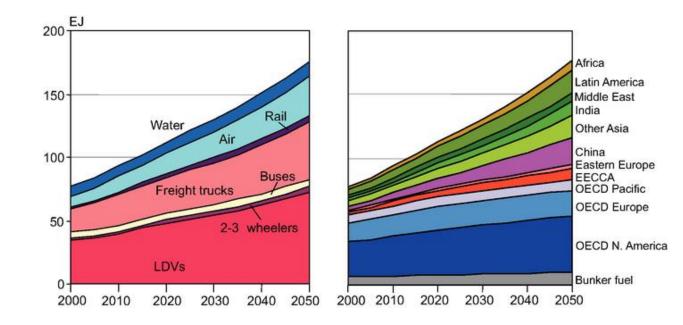
8th International Workshop on Sustainable Road Freight

Predictive powertrain control with connectivity to improve efficiency & emission for heavy duty trucks

Jinlong Hong
Tongji University

Content

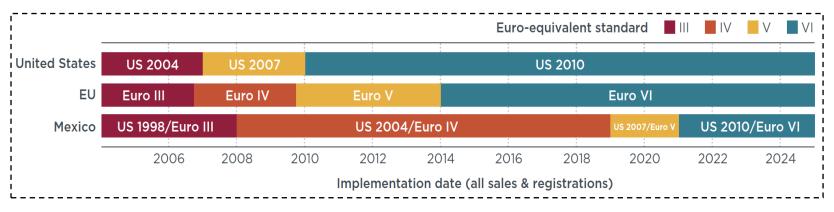

- 1 Background
- Predictive PT Control with Connectivity
- 1 Conclusions



Background

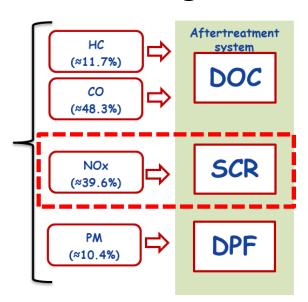
■ Much more energy consumed due to the increasing number of vehicles

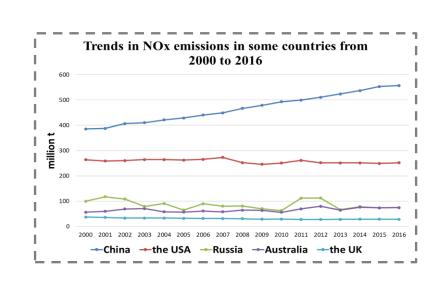
2010-2020 World Vehicle Parc (Unit: 100M) > Energy demand is increasing

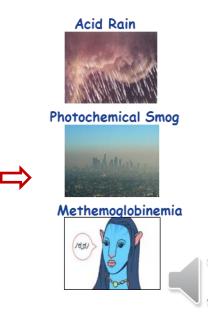


≈1.5B

Background


■ Emission is more serious and regulations is more strict



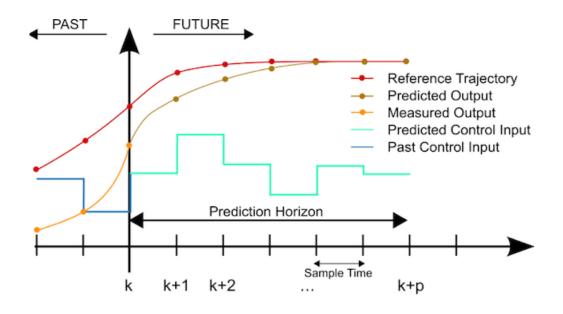


■ Emission reduction is urgent, especially the NOx

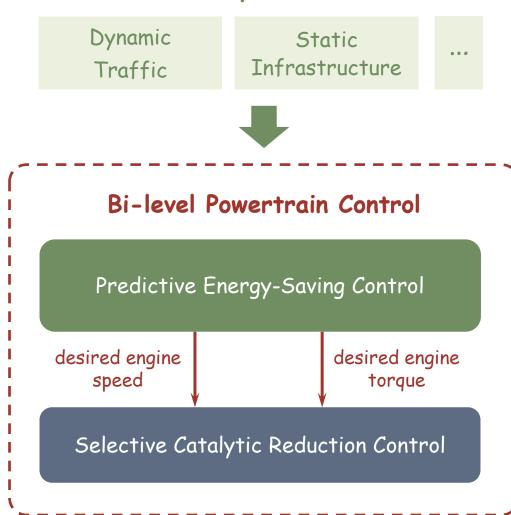
Emissions from heavy duty vehicles

Background

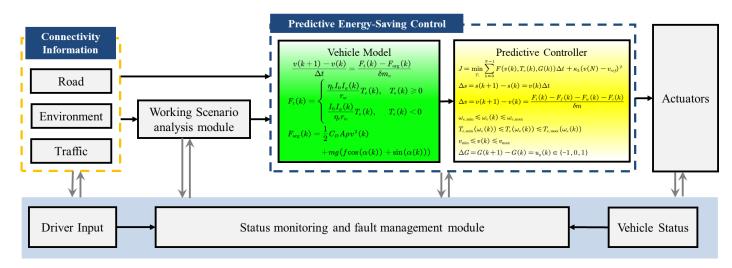
■ Connectivity brings more data



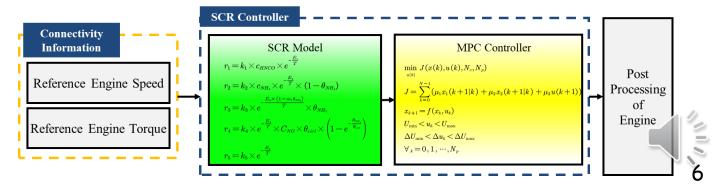
■ Predictive Control is the best fit for powertrain with connectivity



is potentially able to improve the efficiency and reduce emissions



■ Predictive Powertrain Control

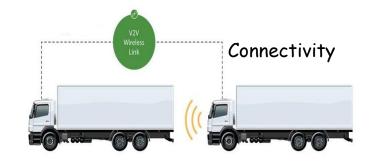

Connectivity Information

Predictive Energy-Saving Control (PESC)

Selective Catalytic Reduction Control (SCRC)

■ Tianlong Qijian Heavy-Duty Truck @Dongfeng

Parameters	Value	Units
Vehicle mass	49000	kg
Transmission eff.	0.98	-
Max engine torq.	2650	Nm
Frontal area	4.2	M^2
Air drag co.	0.5	-
Tire radius	526.7	mm


■ Scenario #1

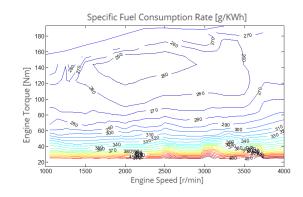
Available data:

- Road Slope
- Road Curvature
- Speed Limit
- Desired Speed: 80km/h

■ Scenario #2

Available data

Preceding Vehicle Speed



■ Powertrain Model

> Drivetrain longitudinal dynamics

$$egin{aligned} rac{v(k+1)-v(k)}{\Delta t} &= rac{F_t(k)-F_{
m arg}(k)}{\delta m_v} \ F_t(k) &= egin{cases} rac{\eta_t I_0 I_g(k)}{r_w} T_e(k), & T_e(k) \geqslant 0 \ rac{I_0 I_g(k)}{\eta_t r_w} T_e(k), & T_e(k) < 0 \end{cases} \ F_{
m arg}(k) &= rac{1}{2} C_D A
ho v^2(k) \ &+ mg(f \cos{(lpha(k))} + \sin{(lpha(k))}) \end{aligned}$$

> Fuel consumption rate

$$Q_f = Q_{BSFC}(T_e, \omega_e) P_e$$

$$Q_f \! = \sum_{i=0}^2 \sum_{j=0}^2 \iota_{i,j} T_e^i \omega_e^i$$

■ SCR Model

> Chemical reaction rate within SCR

$$egin{align*} r_1 &= k_1 \! imes \! c_{HNCO} \! imes \! e^{-rac{E_1}{T}} \ r_2 &= k_2 \! imes \! c_{NH_3} \! imes \! e^{-rac{E_2}{T}} \! imes \! (1 \! - \! heta_{NH_3}) \ r_3 &= k_3 \! imes \! e^{-rac{E_3 \! imes \! (1 - m_1 heta_{NH_3})}{T}} \! imes \! heta_{NH_3} \ r_4 &= k_4 \! imes \! e^{-rac{E_4}{T}} \! imes \! C_{NO} \! imes \! heta_{cirl} \! imes \! \left(1 \! - \! e^{-rac{ heta_{NH_3}}{ heta_{cirl}}}
ight) \ r_5 &= k_5 \! imes \! e^{-rac{E_5}{T}} \end{split}$$

> SCR dynamics

$$\left\{egin{aligned} \dot{C}_{NO_x} &= EF_V imes \dot{C}_{NO_x,in} - 4r_4 - EF_V imes \dot{C}_{NO_x} \ \dot{C}_{NH_3} &= EF_V imes \dot{C}_{NH_3,in} + r_1 - r_2 + r_3 - EF_V imes \dot{C}_{NH_3,out} \ \dot{ heta} &= (r_2 - r_3 + 4 imes r_4 - 4 imes r_5)/ heta_{
m max} \end{aligned}
ight.$$

■ Optimal Control Problem for PESC

> Objective Function

$$J = \min_{T_e} \sum_{k=0}^{N-1} F(v(k), T_e(k), G(k)) \Delta t \, + \kappa_3 (v(N) - v_{ref})^2 \, .$$

$$F(v(k), T_e(k), G(k)) = Q_f(k) + \kappa_1 (v(k) - v_{ref})^2 + \kappa_2 P(k)$$

 $Q_f(k)$: Fuel Consumption $\kappa_1(v(k)-v_{ref})^2$: Speed Tracking

 $\kappa_2 P(k)$: Driving Comfort $\kappa_3 (v(N) - v_{ref})^2$: Terminal Constraints

> Variable State Constraints

$$\Delta s = s(k+1) - s(k) = v(k)\Delta t$$

$$\Delta v = v(k+1) - v(k) = rac{F_t(k) - F_f(k) - F_w(k) - F_i(k)}{\delta m}$$

$$\omega_{e, ext{min}}\!\leqslant\!\omega_{e}(k)\leqslant\!\omega_{e, ext{max}}$$

$$T_{e, \min}ig(\omega_e(k)ig) \leqslant T_eig(\omega_e(k)ig) \leqslant T_{e, \max}ig(\omega_e(k)ig)$$

$$v_{\min} \leq v(k) \leq v_{\max}$$

$$\Delta G = G(k+1) - G(k) = u_g(k) \in \{-1, 0, 1\}$$

■ Optimal Control Problem for SCR

> Objective Function

$$\min_{u(k)} \ J(x(k),u(k),N_c,N_p)$$

$$J = \sum_{k=0}^{N-1} ig(\mu_1 x_1(k+1|k) + \mu_2 x_2(k+1|k) + \mu_3 u(k+1) ig)$$

 x_1 : SCR outlet NO_x concentration

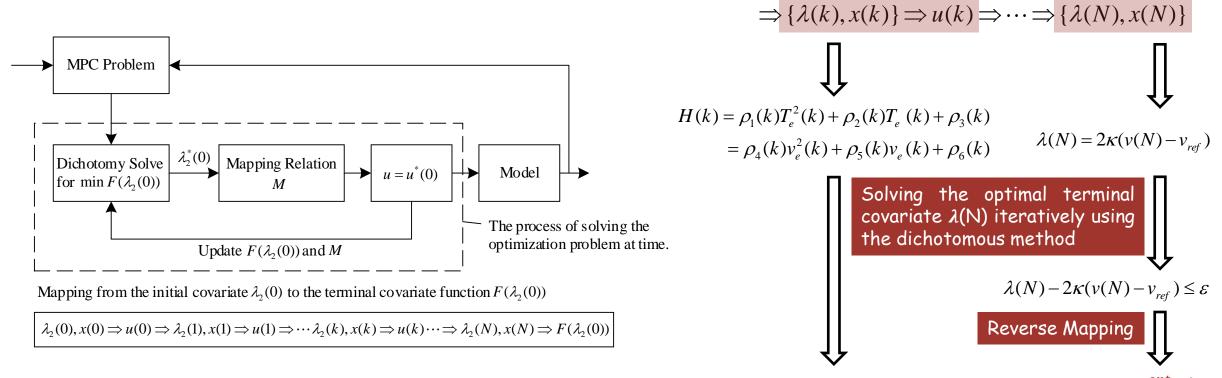
 x_2 : SCR outlet ammonia concentration

u: Ammonia coverage ratio

 $\mu_1, \ \mu_2, \ \mu_3$: weighting factors

> Variable State Constraints

$$x_{k+1} = f(x_k, u_k)$$


$$U_{\min} < u_k < U_{\max}$$

$$\Delta U_{
m min} < \Delta u_k < \Delta U_{
m max}$$

$$\forall_{\,\scriptscriptstyle k} \! = \! 0\,, 1\,,\, \cdots, \! N_{\scriptscriptstyle p}$$

■ Numerical Solution of Optimization Problems

Optimal initial covariance $\lambda(0)$ and the corresponding $T_e^{opt}(0)$

 $\{\lambda(0), x(0)\} \Rightarrow u(0) \Rightarrow \{\lambda(1), x(1)\} \Rightarrow u(1) \Rightarrow \cdots$

Given the initial value of a covariate $\lambda(0)$, the corresponding terminal value of the covariate $\lambda(N)$ can be obtained along the necessary conditions and the optimal control law. The optimal problem is transformed into a problem of solving equations by finding the optimal initial covariates $\lambda(0)$ that satisfy the terminal necessary conditions

■ Consider 5 Combinations of Control Schemes

Baseline Controller (BC)

- Without connectivity
- Only tracking the desired velocity

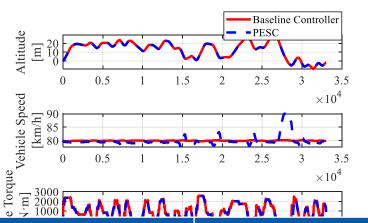
BC with SCRC

 Baseline Controller with a typical industrial feedforward SCR controller

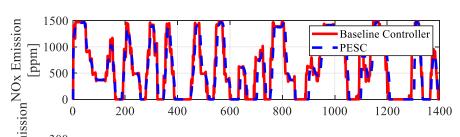
Predictive Energy Saving Controller (PESC)

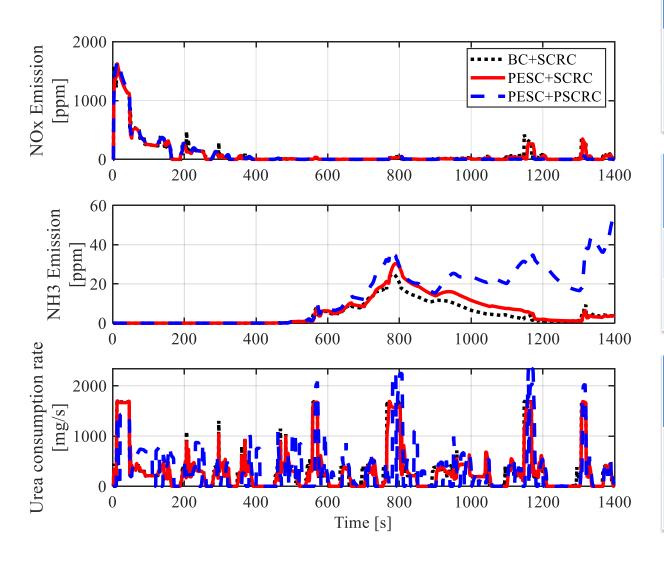
- Have access to information via connectivity
- Consider both fuel saving and speed tracking

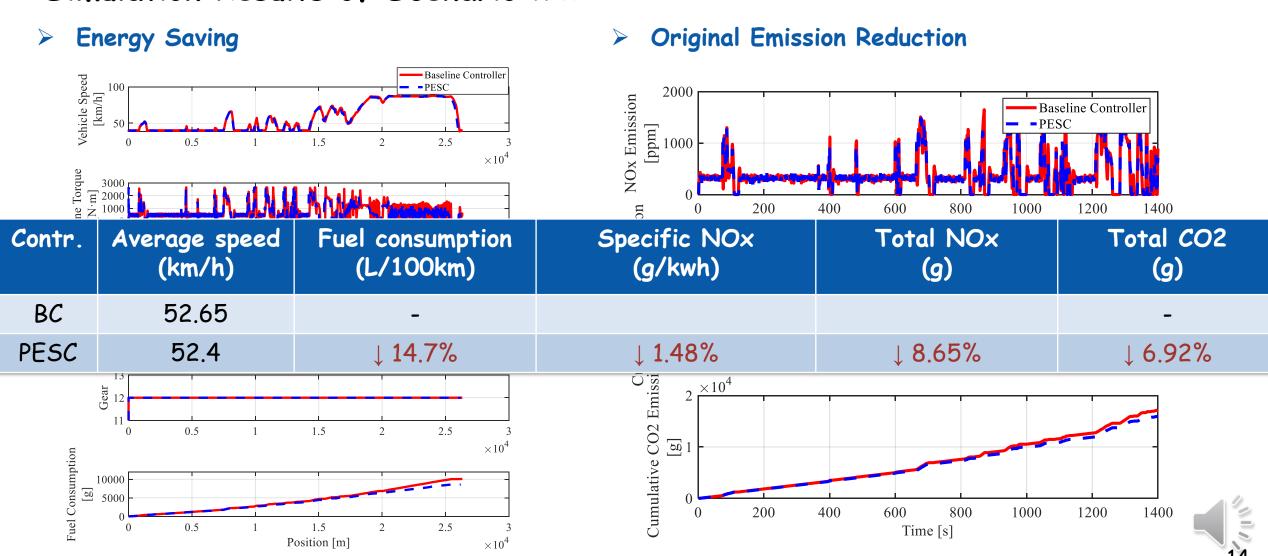
PESC with SCRC

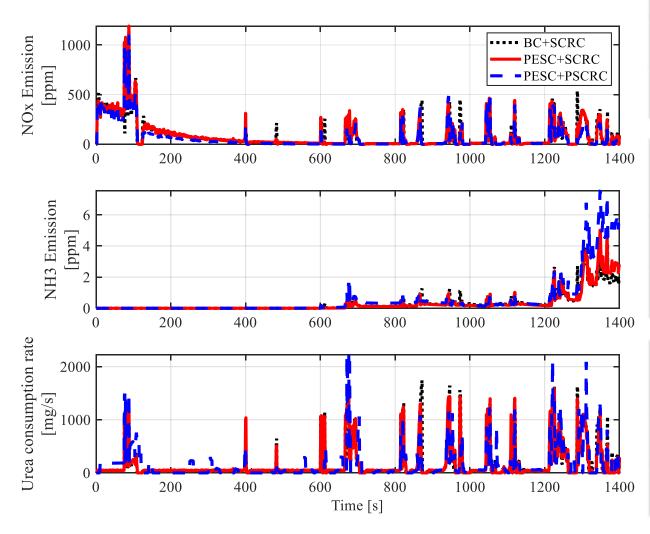

PESC with a typical industrial feedforward
 SCR controller

PESC with PSCRC


PESC with the proposed predictive SCRC



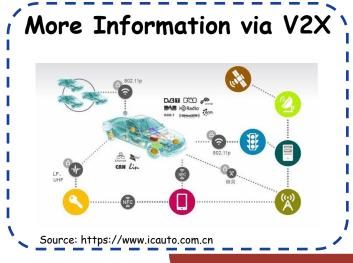

Contr.	Average speed (km/h)	Fuel consumption (L/100km)	Specific NOx (g/kwh)	Total NOx (g)	Total CO2 (g)
BC	79.94	-	-	-	-
PESC	79.78	↓ 4.53%	↓ 2.56%	↓ 9.52%	↓ 4.95%
	an toll n, Hubei	10000 0.5 1 1.5 Posit	×10 ⁴ ×10 ⁴ 2 2.5 3 3.5 tion [m] ×10 ⁴ Coric	200 400 600 800 Time [s]	1000 1200 1400

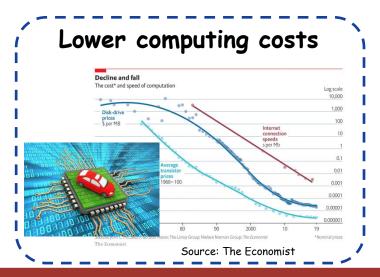


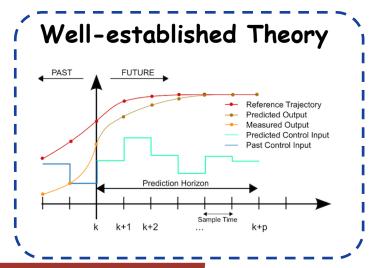
Controller	Total NOx (g)	Urea Consumption (g)
BC + SCRC	-	458.43
PESC + SCRC	↓ 7.37%	445.65

Controller	Total NOx (g)	Urea Consumption (g)
PESC + SCRC	-	445.65
PESC + PSCRC	↓ 5.62%	458.46

Controller	Total NOx (g)	Urea Consumption (g)
BC + SCRC	-	458.43
PESC + PSCRC	↓ 12.58%	458.46


Controller	Total NOx (g)	Urea Consumption (g)
BC + SCRC	-	217.07
PESC + SCRC	↓ 7.68%	218.07


Controller	Total NOx (g)	Urea Consumption (g)
PESC + SCRC	-	218.07
PESC + PSCRC	↓ 22.98%	217.07


Controller	Total NOx (g)	Urea Consumption (g)
BC + SCRC	-	217.07
PESC + PSCRC	↓ 28.9%	217.07

Conclusions

■ What can powertrain control do with the connectivity?

Application of advanced control algorithm e.g. MPC is possible

Safer, more energy efficient, more environmentally friendly, more comfortable ...

- Predictive cruise control
- Predictive energy management for HEVs
- Predictive battery management

- Predictive engine management
- Predictive emission control for trucks...

8th International Workshop on Sustainable Road Freight

